منتدى الجامعة العربية
عزيزي الزائر اهلا بك في اسرة منتديات الجامعة العربية هذه الرساله تفيد بأنك غير مسجل يتوجب عليك التسجيل لتتمكن من رؤية روابط التحميل والمساهمة في المنتدى - كما يجب وضع رد لرؤية الروابط


للتميز عنوان - شاركنا الحلم
 
الرئيسيةالتسجيلدخول
سبحان الله والحمد لله لا اله الا الله و الله اكبر
بحـث
 
 

نتائج البحث
 
Rechercher بحث متقدم
المواضيع الأخيرة
تسجيل صفحاتك المفضلة في مواقع خارجية
قم بحفض و مشاطرة الرابط الجغرافيا كما يجب ان تكون على موقع حفض الصفحات
الإبحار
 البوابة
 الفهرس
 البيانات الشخصية
 س .و .ج
 ابحـث
التبادل الاعلاني

شاطر
 

 Geochemistry of Uranium and Thorium

اذهب الى الأسفل 
كاتب الموضوعرسالة
mhmoudkhlifa


Geochemistry of Uranium and Thorium Default1


ذكر
العذراء عدد الرسائل : 46
العمر : 30
السٌّمعَة : 5
نقاط : 4189
تاريخ التسجيل : 26/06/2008

Geochemistry of Uranium and Thorium Empty
مُساهمةموضوع: Geochemistry of Uranium and Thorium   Geochemistry of Uranium and Thorium Emptyالجمعة يونيو 27, 2008 4:29 am

c2-1 Introduction-

Atomic number of Th is "90", of U is "92", both U and Th are belong to Actinide series. In the earth's crust they are classified as lithophile elements that are concentrated in silicate phase.

U has 3-natural isotopes (238, 235, and 234) the most abundant one is U238 (99.277 %) which has a half life time (4.5*10-9 year). In chemistry U has valences (3, 4, 5, and 6), in nature is tetravalent and hexavalent. U and Th nearly have the same behavior in igneous and metamorphic rocks, while in sedimentary environments we find that U is more mobile than Th. U is mobile under oxidizing conditions, especially in acidic or carbonate rich waters, and immobile under reducing conditions, water rich in organic matter and Fe-oxides where they absorb it.

2-2 Geochemistry and Occurrence of uranium and Thorium:-

The geochemistry of Th, U, Ce, and Zr as these elements appear in igneous rocks is very similar and is governed largely by the low concentration and high valence of their ions. The activation energy of migration of their ions (E-value) is relatively high, which would tend to freeze the ions in the main stage of crystallization of the magma, but their concentrate is ingeneral too low to permit the appearance of phases in which these elements are essential constituents. In broad terms they either concentrate in residual solutions or are included in solid solution in the minerals that form the bulk of the rock.

Uranium and Thorium owing to their high charge and large size of their quadra valent ions do not permit entrance into the normal rock minerals, and as the crystallization proceeds the residual solutions become enriched in these elements.

Zirconium much commoner than U & Th in part crystallizes in the magmatic stage as accessory zircon and may then house a certain amount of Th & U.

Both Monazite and Xenotime appear to house Th & U more readily than Zircon. Zr and rare earth, (Ce IV) together with more polyvalent elements such as Nb and Ta also tend to concentrate in the residual solutions.

Th, Ce, and U have a marked affinity for alkalic rather than granitic or intermediate rocks in the broad coarse of magmatic differentiation.

The main types of deposits that carry concentration of Th minerals are pegmatites, hydrothermal veins and detrital deposits. Pegmatites associated with alkalic igneous rocks, particularly nepheline syenites and their variants, are notably rich in Thorium. These pegmatites are also relatively high in rare earths, Ce, Y, Zr, Nb, Ca, P, and F while Ta & U are minor constituents.

These pegmatites are feldspathic but generally lack quartz and contain nepheline, together with pyroxenes and a variety of complex silicates containing Zr. Apatite is a characteristic accessory mineral in the pegmatites and it sometimes occurs separately as very large deposits associated with alkalic igneous rocks.

Pegmatites derived from granitic rocks tend to contrast with those from alkalic rocks in containing on the whole, a smaller amount of Th and are relatively enriched in Y over Ce, Ta over Nb and U over Th.

The granite pegmatites generally are quartz rich, with Zr present chiefly as Zircon.

Thorium may possible be obtained as a by product from magnetite apatite analogous to the production of uranium from sedimentary phosphate rocks.

Hydrothermal vein deposits containing thorium have become know only during the past few years. They differ from the base-metal sulphide type of veins, in which thorium is lacking in significant amounts, and they show resemblance to the Ce, and Th rich pegmatites associated with alkaline igneous rocks.

Thorium also occurs as a very minor constituent in deposits other than veins and pegmatites, such as with Nb in carbonatites and in a few contact metamorphic deposits. In the sedimentary cycle, thorium unlike uranium is not a significant constituent of carbonaceous marine black shales and apparently does not play an important biochemical role. Zirconium is like thorium in this respect and is deposited chiefly as detrital zircon in near shore clastic sediments. In sea water uranium is enriched relative to thorium.

Alluvial deposits contain the largest known reserves of Th. The thorium-containing mineral, monazite, occurs widely distributed as an accessory mineral in igneous and metamorphic rocks and in pegmatites. The high specific gravity, hardness and general stability of monazite cause it, when freed by weathering to become mechanically concentrated in alluvial deposits. The known deposits of monazite sands are large. The monazite is associated with ilmenite, zircon, magnetite and garnet chiefly, and is separated and concentrated by magnetic methods.

Deposits may contain concentration of uranium more than 10 times the average in the earth's crust (> 0.002% U), are formed by igneous and sedimentary rock forming processes, by ore forming processes.

Uranium has a large atomic radius, high chemical activity; its hexavalent compounds are relatively soluble in aqueous solutions. All these properties permit it to form compounds with many other elements, to inter the structure of a wide variety of minerals, to take part in many chemical reactions and to be deposited in many rocks and minerals of a diverse origin and compositions. These properties also that leads to the wide geologic distribution, lead to its dispersion, so the concentrations of U are not as great as these of other less active metals "e.g. lead, molybdenum…." The concentration of U in valuable deposits seams to be formed by its large radius and high valence, which prevent it from concentration in ordinary rock forming minerals, and also by the relative insolubility in aqueous solutions of its common tetravalent compounds, which lead to the precipitation of U in a wide variety of environments where reducing conditions prevail.











2-3 Geochemical Characteristics of Uranium (U)

1-Atomic no:

92, atomic wt: 238.04

2- Igneous rocks:

ultramafics 0.03, mafics 0.53, Granite 3.9

3- Sedimentary rocks

l.st 2.2, s.st 1.7, shale 3.7 ,Soils: 1

4- Fresh water:

0.5 ppb, (0.05 in humid areas to 5 in arid areas)

5- Associations:

lithophile: V, As, P, Mo, Se, Pb and Cu in Colorado Plateau ores , Co & Ag in some sulfide ores , Au in the South Africa Rand , P in phosphoritite deposits , C in black shales.

6- Rock minerals:

zircon (ZrSiO4), apatite (Ca5 (PO4)3F), allanite complex (aluminosilicate)

7- Industrial sources:

uraninite (UO2), coffinite (USiO4), uraniferous organic matter, carnotite (K2 (UO2)2(VO4)2.3H2O) weathering products: complex carbonates, phosphates, vanadates and silicates, including carnotite, over uraninite ores, organic matter, and to a lesser extent limonite in normal soils: soluble U complexes.

8-Aqueous species:

UO22 , UO2 (CO3)34-, UO2 (CO2)22-, UO2 (HPO4)22-

9- Biological response:

in vegetation, most of the U in the nutrient solution is apparently precipitated in the root tips as autunite, Ca (UO2)2PO4. even so, some U gets through the upper parts of some plant species, where it is useful in biogeochemical prospecting. Because of the association of Se with U deposits of the Colorado plateau, Se indicator plants have successive fully been used in locating U rich areas.









10- Mobility:

mobile to slightly mobile under oxidizing conditions, especially acid or carbonate rich waters, immobile under reducing conditions, strongly sorbed to organic matter and Fe-oxides, may be mobile as organic complexes or colloidal particles.





2-4- Geochemical prospecting applications of uranium

: the content of U in normal soils is not used extensively because of the greater effectiveness of radioactivity and Rn as indicators. U in organic soils and bogs and particularly in organic lake sediments has been shown to be highly effective under specialized conditions. U in stream sediments, especially extractable U, is a useful ore guide, particularly in sediments containing some organic matter. Strong enrichments can occur in organic rich environments; however, U in surface waters is useful but is affected by very large temporal variations and by very low background values in humid regions. U in ground water seems to be good guide if samples can be obtained. Analysis of plants for U has been used successfully in the Colorado Plateau, where it has been known to give an indication of ore through thickness of as much as 15 m of barren cover. Experiments in the swamps of the Arctic taiga country of northern European Russia shown that although both plants and soils shown an anomalies over U ore, soil sampling is generally more satisfactory. U has been used as a guide to U bearing phosphorites.

















2-5-Geochemical characteristics of Thorium (Th):-



1- Atomic no:

90, atomic wt: 232.04



2- Igneous rocks:

Ultramfic rocks: 0.004, Mafic: 207, Granite (20).



3- Sedimentary rocks:

Limestone 1.7, Sandstone (5.50 and Shale (12), Soils (13), Plant ash 20 ppb, Fresh water 0.1 ppb



4- Associations:

lithophile, occurring principally in accessory minerals of igneous rocks, in placer deposits, Th minerals occur for a radioactive decay series ending in He & Pb.





5- Rock minerals:

monazite (RE,Th)PO4, and as a minor constituent of allanite (hydrated silicate of Ca, Fe, Al), sphene (CaTiSiO5), and zircon (ZrSiO4).

Industrial source: monazite in placer deposits.



6- Mobility:

very low, determined by the extremely refractory character of the principal primary Th minerals.



7- Geochemical prospecting

applications: He has been suggested as a guide to Th deposits, a low Th/U ratio in kimberlites has been reported as favorable for the occurrence of diamonds.
الرجوع الى أعلى الصفحة اذهب الى الأسفل
شيماء سيف الدين
مشرفة قسم الجغرافيا
مشرفة قسم الجغرافيا
شيماء سيف الدين

انثى
عدد الرسائل : 1260
الأوسمه : Geochemistry of Uranium and Thorium 243650011
السٌّمعَة : 51
نقاط : 14358
تاريخ التسجيل : 04/04/2008

Geochemistry of Uranium and Thorium Empty
مُساهمةموضوع: رد: Geochemistry of Uranium and Thorium   Geochemistry of Uranium and Thorium Emptyالسبت يونيو 28, 2008 8:06 am

جميل اننا نعرف معلومات عن اليورانيوم والثوريوم لانها مواد خطرة
معلومات هايلة
ميرسي قوي

_________________

Geochemistry of Uranium and Thorium 813867187
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Salma Nader
سندريلا المنتدى
سندريلا المنتدى
Salma Nader

انثى
السمك عدد الرسائل : 3732
العمر : 29
العمل/الدراسة : IT
الاقامة : Germany
الأوسمه : Geochemistry of Uranium and Thorium W4
السٌّمعَة : 87
نقاط : 75300
تاريخ التسجيل : 31/05/2008

Geochemistry of Uranium and Thorium Empty
مُساهمةموضوع: رد: Geochemistry of Uranium and Thorium   Geochemistry of Uranium and Thorium Emptyالأحد أغسطس 17, 2008 7:57 pm

Geochemistry of Uranium and Thorium Eng36jn1

_________________

Geochemistry of Uranium and Thorium 264704200
الرجوع الى أعلى الصفحة اذهب الى الأسفل
Love Angel
برنسيسة المنتدى
برنسيسة المنتدى
Love Angel

انثى
عدد الرسائل : 4070
السٌّمعَة : 2
نقاط : 4261
تاريخ التسجيل : 08/04/2008

Geochemistry of Uranium and Thorium Empty
مُساهمةموضوع: رد: Geochemistry of Uranium and Thorium   Geochemistry of Uranium and Thorium Emptyالسبت أكتوبر 11, 2008 4:52 am

Geochemistry of Uranium and Thorium User5148
Geochemistry of Uranium and Thorium 3ed0c4e9ebds1
الرجوع الى أعلى الصفحة اذهب الى الأسفل
 
Geochemistry of Uranium and Thorium
الرجوع الى أعلى الصفحة 
صفحة 1 من اصل 1

صلاحيات هذا المنتدى:لاتستطيع الرد على المواضيع في هذا المنتدى
منتدى الجامعة العربية :: أحلى لمه كلية علوم :: الكيمياء-
انتقل الى: